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Abstract— The human body responds to neurocognitive stress
in multiple ways through its autonomic nervous system. In-
creases in heart rate, salivary cortisol and skin conductance
level are often observed accompanying high levels of stress.
Stress can also take on different forms including emotional,
cognitive and motivational. While a precise definition for stress
is lacking, a pertinent issue is to quantify the state of psy-
chological stress manifested in the nervous system. State-space
models have previously been applied to estimate an unobserved
neural state (e.g. learning, consciousness) from physiological
signal measurements and data collected during behavioral
experiments. In this paper, we relate stress to the probability
that a phasic driver impulse occurs in skin conductance signals.
We apply state-space modeling to extracted binary measures to
continuously track a stress level across episodes of cognitive
and emotional stress as well as relaxation. Results demonstrate
a promising approach for tracking stress through wearable
devices.

I. INTRODUCTION

Stress, dubbed the “Health Epidemic of the 21st Century”
by the World Health Organization, involves a state of emo-
tional arousal, unpleasantness and loss of control [1]. Stress
has been linked to an increased risk of cardiovascular disease
and loss of work productivity [2], [3]. It affects autonomic
nervous system activity and changes in physiological signals
often accompany stressful time periods [4].

Sweat gland secretions primarily serve a thermoregulation
purpose. The secretions naturally cause a change in the
skin’s electrical conductance. A skin conductance signal
typically comprises of a slow-varying tonic component and
a more rapidly fluctuating phasic part. This phasic part is
usually modeled as the convolution between a driver impulse
train and a bi-exponential impulse response function (IRF)
[5]. Individual skin conductance responses (SCRs) can be
isolated by convolving a specific driver peak with the IRF.
The relationship between stress and skin conductance has
been attested to in multiple studies [4]. Significant changes
in different skin conductance features have been observed
during experiments meant to elicit stress in participants.
The stressful episodes have included arithmetic tasks, the
Stroop test (a color-word association task having conflicting
and non-conflicting word associations), simulated tasks in
human-computer interaction, viewing affective pictures and
bursts of white noise [6], [7], [8], [9], [10].

There has also been considerable interest in wearable
devices and body sensor networks for continuous stress
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TABLE I: SUBJECT INFORMATION

Participant Subject ID Age Gender Body Mass Index
[

kg
m2

]
1 1 30 M 30.00
2 5 30 M 24.75
3 8 27 M 19.32
4 9 25 M 21.70
5 12 32 F 20.20
6 16 24 M 16.66

monitoring. Features extracted from skin conductance sig-
nals include statistics such as the mean, median, standard
deviation etc. as well as measures such peak arrival rates and
amplitudes. Several different supervised learning techniques
including logistic regression, support vector machines, dis-
criminant analysis and nearest neighbor classifiers have been
explored for identifying stress [11], [12], [13].

While the appearance of SCRs accompany arousal events,
non-specific SCRs unrelated to arousal or stress are also visi-
ble in skin conductance data. We develop a state-space model
that characterizes stress as the probability that a SCR impulse
occurs. Hence, in this formulation, we represent the SCR
events as point process observations. To perform maximum
likelihood estimation, we use the expectation maximization
(EM) algorithm to estimate the state-space model from point
process data [14]. We finally express an ideal observer’s
certainty level as an indicator of psychological stress.

II. METHODS

A. Dataset 1 - Cognitive and Emotional Stress Induced in a
Laboratory Setting

We used de-identified skin conductance signals from the
Non-EEG Dataset for Assessment of Neurological Status
[15] [16]. In the experiment, data was collected from 20
participants who were subject to physical, cognitive and emo-
tional stress. In this paper, we focus solely on psychological
stress and exclude the physical stress period (comprising
of standing, walking and jogging). Cognitive stress was
induced through an arithmetic task and the Stroop test, while
subjects were made to watch a clip from a horror movie
for eliciting emotional stress. The arithmetic task involved
counting backwards in 7s beginning at 2485. Moreover,
during the cognitive stress period, a buzzer alerted subjects
of any mistakes. Each major stress episode lasted for about
5 min. and had a 5 min. relaxation time in-between. The
investigators later pointed out how the subjects appeared
to show signs of stress even while being given instructions
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Fig. 1: Peak detection from skin conductance signal. The
skin conductance signal (blue curve), phasic driver (green)
and selected phasic driver peaks (red dots) for the recording
from participant 1 in Dataset 1.

about the cognitive tasks, and hence the 40 sec period just
prior to that was labeled as one of mini emotional stress.

Motion artifacts, changes in amplification factor, and range
saturation can easily corrupt skin conductance signals [4].
Owing to contamination, we discarded data from 14 of the
20 subjects. Information regarding the selected subjects is
provided in Table I and we refer to them as participant 1
- 6 hereafter, instead of by subject ID. We used cvxEDA
[17] to obtain the phasic driver impulse train from the
skin conductance data chosen for our analysis. Since the
impulse train resulting from this decomposition detects small
impulses that might be due to noise, we used MATLAB’s
findpeaks function to select dominant spike locations with
constraints placed on the minimum amplitude and distance
between consecutive peaks to minimize noise effects (Fig. 1).
A further issue is that bursts of neuronal activity stimulating
the sweat glands cannot occur in quick succession.

B. Dataset 2 - Driver Stress

We also used the Stress Recognition in Automobile
Drivers Dataset [18] for validating our method in a real-
world stressful situation. This dataset contains recordings for
17 separate drives on a set route in Boston with highways,
toll roads and city driving. The drives were all conducted
during the mid-morning or mid-afternoon having light traffic.
Each drive began and ended with approximately 15 min. rest
periods where the drivers sat in the car with their eyes shut.
Since annotations indicating the start and end of each portion
(i.e., rest, highway, toll road etc.) are not publicly available,
we could only used one record (Fig. 2) whose approximate
timings had to be matched with a figure in [18].

C. State-Space Model of Stress

We divided the time axis into bins of 1 sec duration
and modeled the extracted phasic driver peaks as a point

process. Each bin is assigned 1 or 0 depending on whether
or not a peak appears within it. Using a state-space model
of point process observations [14], we track the cognitive
stress level across the entire signal. The state-space model
consists of a state equation that describes the latent stress
level and an observation equation describing how observed
peaks are related to the state. We assume that a Gaussian
state equation describes this unobserved cognitive state and
a Bernoulli probability model describes the occurrence of
a peak in each bin. In this study, we perform our analysis
from an ideal observer’s perspective (i.e., someone who has
already seen the entire signal), and estimate stress at each
bin based on detected peaks.

We set the total number of bins K and index them as
k = 1, 2, ...,K in our state-space model. For the observation
equation, we use sk to denote a peak detected in bin k,
where sk follows a Bernoulli distribution, (sk = 1 represents
a peak in bin k, and sk = 0 otherwise). We define qk as the
probability that a peak occurs in bin k. For the state equation,
we let zk denote an unobserved stress level. Variations in
skin conductance are closely related to stress and thus the
probability qk depends on zk. Given a value of the state
process zk, the observation model defines the probability of
observing sk. Similar to [14], the observation model can be
described using the Bernoulli distribution as follows:

P (sk|qk) = qskk (1− qk)1−sk (1)

where qk is defined by a logistic equation:

qk =
1

1 + e−(α+zk)
(2)

The parameter α is related to the random chance that a
peak occurs in a bin at the start of the experiment. We set
z0 = 0, and calculate α using (2) taking q0 = 0.1155 as
the empirically determined chance probability that a peak
occurs in a bin. We define the evolution of the stress state
as a random walk:

zk = zk−1 + εk (3)

where εk ∼ N (0, σ2
ε ).

We observe S1:K = {s1, s2, ..., sK} indicating the pres-
ence or absence of peaks. The objective is to estimate
Z = {z0, z1, z2, ..., zK} and σ2

ε for in turn estimating qk ∀k.
As z is unobserved and σ2

ε is a parameter, we use the EM
algorithm to estimate z and σ2

ε [14]. The E-step consists
of a point process recursive nonlinear filter algorithm and a
fixed-interval smoothing algorithm. The M-step maximizes
the expected value of the complete data log likelihood [14].

D. Stress State Estimation

In the E-step, the filter algorithm computes the state
estimate of the subject and the smoothing algorithm calcu-
lates the estimate of the ideal observer. The filter algorithm
estimates zk|k in bin k, given S1:k, the data up to bin k with
the true parameter σ2

ε replaced by its maximum likelihood
estimate. The fixed-interval smoothing algorithm estimates
zk|K at bin k, given S1:K , all the data in the experiment with
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Fig. 2: Peak detection from skin conductance signal. The skin conductance signal (blue curve), phasic driver (green) and
selected phasic driver peaks (red dots) for the hand skin conductance signal in drive R2-1 [18] in Dataset 2.

the true parameter σ2
ε replaced by its maximum likelihood

estimate. The filter algorithm estimates the stress state in
bin k as a Gaussian random variable with mean zk|k and
variance σ2

k|k whereas the smoothing algorithm does so
with mean zk|K and variance σ2

k|K . We make a Gaussian
approximation in the filter formulation although strictly the
point process nature of the observations is non-Gaussian. We
let qk|k denote the probability of a peak occurring in bin k
given the data S1:k up to bin k, and qk|K the probability
of a peak in bin k given all of the data S1:K . This EM
variation for estimating the state-space model from point
process observations is summarized below.

E. Expectation Step

At iteration (l + 1) of the algorithm, we compute the
expectation of all the data log likelihood in the E-step given
S1:K , the stress state, σ2(l)

ε and z(l)0 , which are the parameter
estimates from iteration l.

Forward Filter: We estimate state variable zk|k and its
variance σ2

k|k, given σ
2(l)
ε and z

(l)
0 , using a recursive non-

linear filter algorithm [14]. This algorithm is based on a
derivation of maximizing posterior probability of the Kalman
filter algorithm [19], [20]. The filter algorithm is given as
follows:

zk|k−1 = zk−1|k−1 (4)

σ2
k|k−1 = σ2

k−1|k−1 + σ2(l)
ε (5)

zk|k = zk|k−1 + σ2
k|k−1

[
sk −

1

1 + e−(α+zk|k)

]
(6)

σ2
k|k =

{
1

σ2
k|k−1

+
e(α+zk|k)

[1 + e(α+zk|k)]2

}−1
(7)

for k = 1, 2, ...,K . The initial condition is z0 = z
(l)
0 and

σ2
0|0 = σ

2(l)
ε . zk|k appears on both sides of (6) and this

nonlinear equation can be solved using Newton’s method.
Backward Filter: From (6) and (7), we can obtain the

posterior mode estimate zk|k and its variance σ2
k|k. Given

this data, we apply the fixed-interval smoothing algorithm
to compute zk|K and σ2

k|K . The fixed interval smoothing
algorithm is given as follows [14]:

Ak =
σ2
k|k

σ2
k+1|k

(8)

zk|K = zk|k +Ak
(
zk+1|K − zk+1|k

)
(9)

σ2
k|K = σ2

k|k +A2
k

(
σ2
k+1|K − σ

2
k+1|k

)
(10)

for k = K − 1, ..., 1. The initial conditions are zK|K and
σ2
K|K .

F. Maximization Step

The expected value of the complete data likelihood is
maximized as follows [14]:

σ2(l+1)
ε =

2

K + 1

[
K∑
k=2

(σ2
k|K + z2k|K)

−
K∑
k=2

(Akσk|K + zk|Kzk−1|K)

]

+
1

K + 1

[
3

2
(σ2

1|K + z21|K)− (σ2
K|K + z2K|K)

]
(11)

z
(l+1)
0 =

1

2
z1|K (12)

Notations zk|j , σ2
k|j , and qk|j , respectively, denote the

stress state, its variance and the probability of a peak
occurring in bin k. The algorithm iterates between the E-step
and the M-step in two loops until convergence. The change of
variables formula can be applied to the Gaussian probability
density with mean zk|j and variance σ2

k|j to obtain the
probability density for qk using the forward (j = k) or
backward (j = K) filter algorithms as follows [14]:

f(q|α,zk|j , σ2
k|j) =

1√
2πσ2

k|jq(1− q)

× exp

{
−1
2σ2

k|j

[
− zk|j + log

q

(1− q)eα

]}
(13)

From (12), we can compute confidence intervals similar
to [14] to obtain the ideal observer’s assessment regarding



the probability that the appearance of a peak in bin k was
more than just due to chance (i.e., due instead to stress).

III. RESULTS

A. Dataset 1

Estimates for qk|k, qk|K and the ideal observer’s cer-
tainty level of stress for the six participants in Dataset 1
are shown in Fig. 3. Participant 1 appears to be stressed
out considerably during the cognitive stress portion of the
experiment (recall that the mini emotional stress period at
the outset was actually when participants were receiving
directions about the cognitive tasks). His stress level drops
significantly during the relaxation period that follows and
increases momentarily at the start of the horror movie. Since
the qk|k and qk|K values are extremely low at the end of the
experiment, the corresponding confidence intervals can be
seen to span the entire support of qk in [0, 1]. Participant 2
is also visibly stressed during the cognitive tasks based on the
ideal observer’s certainty assessment. Stress level can also be
seen to decline since the start of the horror movie. There is
one notable exception in that there is a significant momentary
increase right in the middle of the relaxation period. The
stress profile of participant 3 also follows the typical pattern
of being high during cognitive stress, dropping significantly
during relaxation and having a short increase that eventually
dies out since the start of the horror movie. An exception
is noted here again with a momentary increase, though not
exceeding 90%, towards the end of the movie clip.

Participant 4 has a somewhat varied response in compari-
son to the others. While increases are noted during cognitive
stress, the 90% certainty threshold is only exceeded towards
the end of the Stroop test. Stress level also remains higher for
slightly longer than usual into the relaxation period. Reaction
to the horror movie is somewhat similar and two initial
stress responses over the 90% certainty threshold gradually
decline with time. In the case of participant 5, stress level
remains high almost constantly during the cognitive tasks. It
drops significantly during relaxation and remains very low
during the horror movie with two slight increases. The stress
profile for participant 6 is typical as well, similar to that of
participants 1 and 3.

B. Dataset 2

Stress estimates for the driver are shown in Fig. 4. Except
for a short spike in stress during the initial rest period,
the subject appears to be relatively calm from the ideal
observer’s perspective until driving commences. While exact
traffic condition annotations are unavailable for each different
period, the subject’s stress level can only be seen to drop
significantly for reasonable lengths of time during highway
driving (yellow). City driving (blue) and driving on the toll
roads (red) is stressful to the subject. Somewhat surprising is
the fact that the subject appears remarkably stressed, almost
comparable to when driving, during the second rest period
at the conclusion of the route. This exception has been
elaborated on in the following section.

IV. DISCUSSION AND CONCLUSION

Stress responses to similar stimuli and associated psy-
chophysiology vary between different individuals. State-
space modeling has the advantage of being able to pick
up some of the subtle differences among subjects when
exposed to cognitive and emotional stress. In Dataset 1, all
participants were seen to have a high level of stress during
the cognitive tasks. Both the arithmetic task and Stroop test
involved active cognitive engagement and added the stress
of alerting the subjects of any mistakes with a buzzer. In
contrast, watching the horror movie only involved passive
engagement. Skin conductance signals in general are known
to be sensitive to psychological arousal [4]. It is likely that
an initial to stress response or excitement at the start of the
horror movie gradually wore off as the clip proceeded.

Driving can be a stressful experience and Dataset 2 affords
the opportunity to analyze stress in a real-world situation.
The subject’s stress level varies considerably during the
entire route. No clear changes exist between city driving
and driving on the toll roads or highways. Without actual
traffic annotations or self-reported scores, it is difficult to
correlate the stress level fluctuations within each type of
road condition to anything more specific. In [18], a stress
metric was calculated for the duration of the drive based on
collected data. Concering the particular subject in drive R2-
1, the authors in [18] note “During this drive, the subject
was unusually agitated during the second rest period due to
a need to use the restroom [and] this agitation is reflected in
the stress metric.” This confirms the high stress level noted
in our analysis too during the latter rest period.

This paper presented a state-space model for recovering a
stress level from phasic driver impulses in skin conductance
signals. The model was evaluated on publicly available
datasets with signals recorded from subjects during different
stressful scenarios, both artificially induced and real-world.
Although not expressly calculated here, the percentage of
time the ideal’s observer’s certainty level exceeds 90% would
be a suitable stress metric to be incorporated into a wearable
device. We plan to extend the deconvolution strategy in
[21] to recover the amplitudes of the sparse phasic driver
impulses and include these values in our state-space model.
Incorporating additional physiological measures, such as
heart rate, to supplement this analysis would enable a broader
system capable of quantifying both psychological valence
and arousal [4]. We could also extend the work by using
particle filters for non-linear state estimation [22].

The EM algorithm must be executed offline for parameter
estimation. Stress estimation could therefore be executed
batchwise once every 5 min. or so, or the EM algorithm
could be run at predefined intervals for optimal parameter
selection and just the filter algorithm be used for tracking
stress in-between.
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qk|K and its confidence intervals; (iii) the lower sub-panel depicts the observer’s certainty level of stress with the region
above 90% highlighted in red for participants in Dataset 1. The color-coded backgrounds correspond to mini emotional
stress, the arithmetic task, the Stroop test (both forming cognitive stress), relaxation and emotional stress. Green dots above
both upper sub-panels depict peak locations.



Fig. 4: Stress state estimation. The upper sub-panels depict zk|K and qk|K with its confidence intervals. The lower sub-panel
depicts the observer’s certainty level of stress for the subject in Dataset 2. The color-coded backgrounds correspond in turn
to rest, city driving, toll road, highway, toll road, city driving, toll road, highway, toll road, city driving and rest.

[2] S. A. Everson-Rose and T. T. Lewis, “Psychosocial factors and
cardiovascular diseases,” Annu. Review of Public Health, vol. 26,
pp. 469–500, 2005.

[3] T. W. Colligan and E. M. Higgins, “Workplace stress: Etiology and
consequences,” J. Workplace Behavioral Health, vol. 21, no. 2, pp. 89–
97, 2006.

[4] W. Boucsein, Electrodermal Activity. New York, NY: Springer Science
& Business Media, 2nd ed., 2012.

[5] M. Benedek and C. Kaernbach, “Decomposition of skin conductance
data by means of nonnegative deconvolution,” Psychophysiology,
vol. 47, no. 4, pp. 647–658, 2010.

[6] Z. Visnovcova, M. Mestanik, M. Gala, A. Mestanikova, and I. Ton-
hajzerova, “The complexity of electrodermal activity is altered in
mental cognitive stressors,” Comput. Biology and Medicine, vol. 79,
pp. 123–129, 2016.

[7] M. Svetlak, P. Bob, M. Cernik, and M. Kukleta, “Electrodermal com-
plexity during the Stroop colour word test,” Autonomic Neuroscience,
vol. 152, no. 1, pp. 101–107, 2010.

[8] H. F. Posada-Quintero, J. P. Florian, Á. D. Orjuela-Cañón, and
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